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Abstract

A mathematical model is presented for analyzing the flow of magneto-micropolar

nanofluid above a convectively heated permeable stretching sheet with non-linear

radiation and viscous dissipation. The similarity transformation is utilized to

change the governing partial differential equations (PDEs) to the system of non-

linear ordinary differential equations (ODEs). The resulting system of ODEs is

sorted out mathematically by utilizing the shooting method and the obtained

mathematical outcomes are compared with those obtained using the MATLAB

built-in function bvp4c. Numerical values of the physical quantities like, the skin

friction coefficient, the Sherwood number and the Nusselt number for the emerging

parameters such as, Pr, Nb, Nt, and Le, etc, are also computed and discussed in

this work.
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Chapter 1

Introduction

The science which analyzes the movement of a highly conducting fluid within

the presence of a magnetic field is termed as the Magnetohydrodynamics (MHD).

Analysis of Newtonian and non-Newtonian flows in the presence of magnetic field

has innumerable applications in industries and engineering. Some prominent uses

of MHD can be seen in the cooling system with fluid metals, MHD power genera-

tors, liquid beads and sprays, accelerators, atomic reactors, preparing of nourish-

ment stuffs, oil industry, microelectronic gadgets, geothermal energy extractions

of metals and so on. Ahmad et al. [1] investigated the semi-inverse solutions

for nonuniform magnetohydrodynamic stream of second-grade fluid over stretch-

ing surface. Irregular magnetohydrodynamic mixed convection stream of second-

grade nano-fluid induced by stretching plane with thermal radiation was observed

by Ramzan and Bilal [2]. Ellahi [3] examined the magnetohydrodynamic flow of

non-ideal nano-fluid in a tube. Govindaraju et al. [4] studied the entropy mod-

eling of the nanofluid and MHD flow over a nonlinear stretching surface. MHD

rotating flow of water based nano-fluids moving in parallel plates was discussed

by Sheikholeslami et al. [5]. Lin et al. [6] examined the heat transfer impacts

on MHD flow of pseudo-plastic fluid loaded with antiparticles. Hayat et al. [7]

analyzed the three dimensional MHD stream of Maxwell nano-fluid through con-

vective boundary. Ahmad and Asghar [8] inspected the magnetohydrodynamic

flow of second-grade fluid above the stretching plane. Hayat et al. [9] analyzed

1



Introduction 2

the magnetohydrodynamic (MHD) flow of second-grade nanofluid because of a

nonlinear stretching surface. Ariel [10] also examined the computational aspects

for MHD stream close to a pivoting disk. Numerous comparative investigations

are contemplating the significance of fluid movement through various physical

phenomenon can be seen in [11–13].

The impact of thermal rays is essential in space technology and high temperature

processes. At the point when the temperature variation is very high, the linear

thermal radiation causes a noticeable error. To overcome such errors, nonlinear

thermal radiation is taken into account. The impact of chemical reaction and

thermal radiation on the flow over stretching surface with outer heat source was

explained by Krishna et al. [14]. Researchers and scientists have done a series of

research work to highlight the importance of thermal radiation [15–17].

Mixed convection is one of the transport phenomena which is composed of both

natural and forced convection flow. Mixed convection flow, appear in many trans-

port processes both naturally and in engineering applications. Industrial and

technical processes incorporating the solar central receivers exposed to winds,

electronic gadgets cooled by fans and nuclear reactors cooled in case of emer-

gence shutdown. Abo-Eldahab et al. [18] examined the magneto-hydrodynamic

free heat transfer flow past a semi-infinite vertical strip with mass exchange and

Hall effects. Mixed convection boundary layer is influenced by Hall current and

Ohmic heating. Impacts on flow of a micropolar fluid from a circular cone with

power-law fluid at stretching surface was studied by Abo-Eldahab et al. [19]. The

impact of Hall current and chemical reaction on hydromagnetic flow of a vertical

stretching plane with interior heat absorption was presented by Salem and El-Aziz

[20].

Micropolar fluids are those which contain micro-constituents that can undergo

rotation, the appearance of which can influence the hydrodynamics of the stream

so that it can be clearly non-Newtonian. Different types of non-ideal fluids can

be seen in routine life such as, macromolecules, animal blood, and shampoo, etc.
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Eringen’s [21] pioneering work in micropoler fluids opened the entryways in non-

ideal fluids. Nadeem et al. [22] explored the affects of hydrodynamic flow of

micropaler nano-fluid between parallel plates in a rotating procedure. Impact of

radiation transfer and chemical reactions on micropoler fluid flow with perforated

wells forming a path is given by Fakoura et al. [23]. Hayat et al. [24] considered

the micropoler fluid flow affected by chemical reaction and thermal radiation.

Nanoparticles in different base fluids can alter the fluid stream and heat transfer.

These suspensions of micro particles in the fluids are called nano-fluids. Nano-

fluids have received a prominent attention because of their huge spectrum of ap-

plications in atomic reactors, transportation, food, microbial fuel cell technology,

polymer covering, intelligent building design, micro fluid conveyance gadgets and

aerospace trilogy. Choi [25] presented the term nanofluid and depicted that the

heat characteristics of the fluids are increased when we incorporate the nanopar-

ticles in fluids. Boundary-layer flow of nano-fluid above linear stretching plane

exposed to the convective boundary condition was analyzed by Makinde and Aziz

[26]. Lin et al. [27] highlighted the usefulness of the magnetic lines of force in

time-directive movement of pseudo-plastic fluid above a thin layer by taking in to

account the inner radiation source impact. Free-convective flow of magnetic de-

pendent velocity nano-fluid was given by Sheikholeslami et al. [28]. Khan and Pop

[29] analyzed the nanofluid flow bounded by a stretchable surface using numeri-

cal approach. They concluded that Brownian motion and thermophoresis effects

enhance the penetration depth of heat. Pal et al. [30] examined the impacts of

magnetic lines of force on radiation transfer above a non-linear expanding plate

in nano-fluid with thermal radiation. Rashidi et al. [31] examined the magneto-

hydradynamic flow of nano-fluid by a rotating perforated disk with disorderness.

Sheikholeslami et al. [32] described the radiation transform studies of nano-fluid

equipped with perforated medium past a porous stretching boundary. More re-

lated research involving nanofluids can be seen through the investigations [33–35].
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Thesis contribution:

In this thesis, we provide a review study of Ramzan et al. [36] and extend the flow

analysis by considering the additional effects of Nanofluid, viscous dissipation and

non linear thermal radiation with the assumptions of laminar, steady, incompress-

ible, two dimensional, porous stretching sheet, Joule heating, micropolar nanofluid

with elector-hydrodynamic, convective boundary condition and micro-slip condi-

tion on the wall. The obtained system of PDEs is transformed into a system

of non-liner and coupled ODEs by using a suitable similarity transformation. A

numerical solution of the system of ODEs is obtained by employing the shooting

method and the precision of the obtained numerical results is compared by using

the Matlab bvp4c function. The mathematical inferences are discussed for differ-

ent physical parameters appearing in the solution influencing the flow and heat

transform.

Thesis outline:

The thesis is compiled as:

Chapter 2 includes the fundamental definitions and terminologies used through-

out the thesis.

Chapter 3 contains a comprehensive numerical review of [36]. A numerical study

of micropolar, partial slip, MHD flow with convective boundary condition is an-

alyzed. The constitutive of the flow model expression are sorted out numerically

and the impact of physical parameters concerning the flow model on dimensionless

energy, velocity, and microrotation are presented through graphs and tables. A

comparison of the achieved numerical results with the published results of Ramzan

et al. [36] is also presented.
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In Chapter 4, we discuss the partial slip effects on magneto-micropolar nanofluid

movement and heat exchange past a convectively heated sheet with nonlinear ther-

mal radiation and viscous dissipation. The reduced system of ODEs after applying

a proper similarity transform is solved numerically. Graphs and tables describe

the behavior of physical quantities such as, Pr, Nb, Nt, and Le etc. Numerical

values of skin friction coefficient, Sherwood number and Nuselt number have also

been computed and discussed in this Chapter.

In Chapter 5, major conclusion are drawn through the summary of the dis-

sertation.

All the references used in this dissertation are listed in Bibliography.



Chapter 2

Basic definitions and governing

equations

In this chapter, some basic laws, concepts, terminologies and definitions will be

explained, which will be helpful in the next chapters.

2.1 Fluid

In mathematical literature, the material which alters continuously by the effect

of shear stress is called a fluid. It doesn’t matter what kind of shear stress it is.

The shape of the fluid is also changed through the act of shear stress. Liquids and

Gases are the examples of fluid.

2.1.1 Fluid Mechanics

The area of physical sciences that studies the action of fluid in static or dynamic

condition is called the fluid mechanics. It has further categories presented below.

6
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2.1.2 Fluid Statics

A branch of fluid mechanics that deals with the fluid and its characteristics at a

fixed position, is called the fluid statics.

2.1.3 Fluid dynamics [37]

“The study of application of laws of forces and motion on the moving fluid is given

the name of fluid dynamics. The main principle which deals this motion, is the

Newtons second law of motion i.e., F = ma, where F is applied force, m is mass

of body and a is acceleration of body due to applied force.”

2.2 Uniform and non-uniform flow [37]

“If the magnitude and direction of stream velocity is the same at each point in

the fluid, it is known as the uniform flow. But if the velocity is not the same at

each point of the flow, at a given instant, then the flow become non-uniform.”

2.3 Steady flow [37]

“Steady flow is defined as that type of flow in which the physical properties of the

fluid like velocity, pressure, density, etc., at a specific point do not change with

time. Let λ be any fluid property, then the following holds for the steady flow.

∂λ

∂t
= 0,

where λ is any fluid property.”
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2.4 Unsteady flow [37]

“If any physical property of the fluid at a specific point changes with time then such

flow is called the unsteady flow. Let λ be any fluid property, then the following

holds for an unsteady flow.”
∂λ

∂t
6= 0.

2.5 Laminar and turbulent flows [38]

“A laminar flow is one in which the fluid particles move in smooth layers, or

laminas. In such flow, the path lines of fluid particles do not intersect each other.

A turbulent is one in which the fluid particles rapidly mix as they move along

due to random three dimensional velocity fluctuations. i.e., fluid particles change

directions continuously, is called the turbulent flow.”

2.6 Compressible and incompressible flow [38]

“The flow type in which the density is constant within the fluid, is called an

incompressible flow. The mathematical equation for an incompressible flow is

given by
Dρ

Dt
= 0,

where ρ denotes the fluid density and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+ V · ∇. (2.1)

In Eq. (2.1), V denotes the velocity of the flow and ∇ is the differential operator.

In Cartesian coordinate system ∇ is given as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.
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The fluid flow in which the density variation is not negligible, is termed as a

compressible flow.”

2.7 Viscosity [38]

“Viscosity is an intrinsic property of the fluid that measures the fluid’s resistance.

In other words, it is a measure of how much force is required to move from one layer

of the fluid to another layer. Usually liquids and gases have non-zero viscosity.

The coefficient of viscosity is denoted by the symbol µ. Viscosity can be described

in the following two different ways.”

2.7.1 Dynamic viscosity [37]

“It is defined as the resistance offered to a layers of the fluid, when it moves over

another layer of the fluid. When two layer of a fluid, a distance by apart, move

over the other with different velocities, then the viscosity together with relative

velocity cause a shear stress acting between the fluid layers. This shear stress is

proportional to the rate of change of velocity with respect to the velocity gradient.

Mathematically, it can be written as:

Viscosity(µ) =
Shear stress

Rate of shear strain
.

In the above expression, µ is the coefficient of viscosity. This is also known as the

absolute viscosity or the dynamic viscosity having dimension [ML−1T−1]. Unit of

viscosity in SI system is kg/ms or Pascal-second [Pa.s].”



10

2.7.2 Kinematic Viscosity [37]

“The kinematic viscosity depicts the ratio of the dynamic viscosity µ to the density

of the fluid ρ. It is represented by ν. Mathematically,

ν =
µ

ρ
.

The dimension of kinematic viscosity is [L2T−1] and its unit in SI system is m2/s.”

2.8 Newtonian and non-Newtonian fluid [37]

“The real fluids, in which the the shear stress is directly proportional to the rate

of shear strain (or velocity gradient), are known as the Newtonian fluids. Their

behavior is given by the relation

τ = µ
du

dy
.

In the above equation, τ is the stress tensor, µ is the viscosity and du
dy

is the

deformation rate. The real fluids, in which the the shear stress is not proportional

to the rate of shear strain (or velocity gradient), are known as the non-Newtonian

fluids.”

2.9 Generalized continuity equation [39]

“The continuity equation implies a balance between the masses entering and leav-

ing a control volume per unit time and the change in density within it. For the

unsteady flow of a compressible fluid, the conservation of mass applied to a fluid

passing through an infinitesimal, fixed control volume yields the following equation

of continuity:
∂ρ

∂t
+∇.(ρV) = 0. (2.2)
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The first term in this equation represents the rate of increase of density in the

control volume and the second term represents the rate of mass flux passing out of

the control surface per unit volume. If the fluid is incompressible, then Eq. (2.2)

reduces to

∇ ·V = 0.

Above relation holds for a steady or an unsteady incompressible flow.”

2.10 Generalized momentum equation [39]

“The momentum equation is derived from Newton’s law of motion. Further, in

fluid motion it is necessary to consider two types of forces separately, (1) forces

acting throughout the mass of the fluid element, known as body forces, and (2)

forces acting on the boundary, known as surface forces. F is denoting the sum of

above two types of forces, then the momentum equation can be written as

m
DV

Dt
= F.

The flow of the fluid is represented by the differential equation as

ρ
DV

Dt
= ∇.τ + ρb,

where ρb is the net body force, ∇.τ the surface force and τ the Cauchy stress

tensor.”

2.11 Magnetohydrodynamics [38]

“The magnetohydrodynamics is a combination of three words. Magneto means

the magnetic field, hydro stands for water and dynamics for the movement. The

study of the motion of electrically conducting fluids in which current is induced
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by the magnetic field, is known as the magnetohydrodynamics (MHD). Examples

of such fluids are plasmas, electrolytes, salt water and liquid metals.”

2.12 Porosity [40]

“The porosity is the ratio of volume of pores to the bulk volume of a porous

medium. A porous medium is often identified by its porosity. The momentum

equation with porosity and MHD, is as follows.

ρ
DV

Dt
= ∇.τ − ρσB2V − ρkV. (2.3)

Here, k and B are the porosity and magnetic field of the medium respectively.”

2.13 Heat transfer [40]

“Heat transfer is the energy transfer due to temperature difference. When there is

a temperature difference in a medium or between media, heat transfer must take

place. Heat transfer can occur through the following three mechanisms.”

2.14 Conduction

The way in which the transfer of heat phenomenon occurs, due to physical contact

of the bodies or the systems, is called conduction. Ironing clothes, melting piece

of ice in hand and becoming hot, the bonnet or hood of a car, metal spoon in

boiling water, a cup with hot coffee, all are the examples of conduction.
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2.15 Convection [40]

“Convection is the transfer of heat through fluids (gases or liquids) from a warmer

place to a cooler place. In fluid dynamics, convection is the energy transfer due to

bulk fluid motion. Convective heat transfer arises between a fluid in motion and

a bounding surface. If there is a difference in the temperature of the fluid and

the bounding surface, then the thermal boundary layer is created. Fluid particles

which interact with the surface, attain equilibrium at the surface temperature

and transfer energy in the next layer and so on. Through this mode, temperature

gradients are produced in the fluid. The area of fluid containing these temperature

gradients identified as the thermal boundary layer. Since the convective heat

transfer is by both the random molecular motion and the bulk motion of the fluid,

the molecular motion is more adjacent to the surface where the fluid velocity is

less. Convective heat transfer depends upon the nature of the flow. Therefore

convection has three forms: Forced convection, Natural (free) convection, and

Mixed convection.”

2.15.1 Forced convection [40]

“Forced convection is a process, or kind of energy transfer in which fluid motion is

produced by an external source. It is be deliberated as one of the core techniques

of useful heat transfer as a weighted amount of heat energy can be transferred very

efficiently. In other words, a technique of heat transfer in which fluid motion is

originated by an independent source like a pump and fan etc., is called the forced

convection.”

2.15.2 Natural convection [40]

“Natural convection is a heat transport process, in which the fluid motion is not

developed by any external source, but only by the density differences in the fluid
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taking place due to the temperature gradients. It happens due to the temperature

differences which affect the density of the fluid. It is also known as free convection.”

2.15.3 Mixed convection [40]

“It is a combination of both the forced convection and the natural convection and

occurs when natural convection and forced convection act collectively to transfer

the heat.”

2.16 Radiation [40]

“Radiation is the energy transfer due to release/discharge of the electromagnetic

waves or photons from a surface volume. Radiation doesn’t require any medium

to transfer heat. The energy produced by radiation is transformed by the electro-

magnetic waves.”

2.17 Thermal conductivity [40]

“The property of a material to pass on heat through it by conduction, is known

as the thermal conductivity. Mathematically it is given by the relation

κ =
q∇l
S∇T

,

where q is the heat passing through a surface area S and causing a temperature

difference ∇T over a distance of ∇l. Here l, S and ∇T all are assumed to be of

unit measurement. The unit of thermal conductivity in SI system is W
m.κ

and its

dimension is [MLT−3θ−1].”
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2.18 Thermal diffusivity [37]

“Thermal diffusivity is a material property for characterizing unsteady heat con-

duction. Mathematically, it can be expressed as

α =
κ

ρCp
,

where κ, ρ and Cp represent the thermal conductivity of material, the density and

the specific heat capacity of material respectively . The unit and dimension of

thermal diffusivity in SI system are m2s−1 and [LT−1] respectively.”

2.19 Dimensionless numbers

2.19.1 Reynolds number [37]

“It is the most significant dimensionless number which is used to identify the

different flow behaviors like laminar or turbulent flow. It helps to measure the

ratio between the inertial force and the viscous force. Mathematically,

Re =
ρU2

L
µU
L2

=⇒ Re =
LU

ν
,

where U denotes the free stream velocity, L the characteristics length and ν stands

for the kinematic viscosity. At low Reynolds number, laminar flow arises, where

the viscous forces are dominant. At high Reynolds number, turbulent flow arises,

where the inertial forces are dominant.”
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2.19.2 Prandtl number [37]

“It is the ratio between the momentum diffusivity (ν) and the thermal diffusivity

(α). Mathematically, it can be written as,

Pr =
ν

α
=⇒ µ/ρ

k/Cpρ
=⇒ µcp

k
,

where µ represents the dynamic viscosity, Cp denotes the specific heat and κ stands

for the thermal conductivity. The relative thickness of thermal and momentum

boundary layer controlled by Prandtl number. For small Pr, the thermal boundary

layer becomes thicker than the velocity boundary layer.”

2.19.3 Nusselt number [37]

“The Nusselt number is the ratio of the convective to the conductive heat transfer

across (normal to) the boundary. Mathematically, it can be written as:

Nu =
hL

κ
,

where h stands for the convective heat transfer, L for the characteristics length

and κ for the thermal conductivity.”

2.19.4 Skin friction coefficient [37]

“The skin friction coefficient occurs due to the friction between the fluid and the

solid surface which leads to slow down the motion of the fluid. The skin friction

coefficient can be defined as,

Cf =
2τw
ρU2

,

where τw denotes the wall shear stress, ρ the density and U the free-stream veloc-

ity.”
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2.19.5 Darcy’s number

Henry Darcy (1856) is the mathematician who introduced this number and non

dimensionalising the of Darcy’s law was its cause. The Darcy’s number is the

representative of the relevant effects of the permeability of the medium compared

with its cross - sectional area. Mathematically,

Da =
κ

a2
,

where a is the diameter of the particle and κ shows the porosity.

2.20 Boundary layer flow [38]

“A layer of reduced velocity in the fluid is called the boundary layer. It is exactly

adjacent to the solid surface which is just following the fluid. The basic idea of

boundary layer in motion of a fluid over a surface was first introduced by Ludwig

Prandtl (1874-1953). All the work done further in the fields of separation, heat

transfer and skin friction was due to the basic idea and knowledge given by him

in his papers. The reason why we have the velocity zero, exactly adjacent to the

layer, is that the viscous effect and the layer of the fluid which is making contact

with the surface becomes slowly adhered to the surface resulting in a condition of

no-slip. The phenomenon of shearing takes place in the process due to the fact

that the layers of the fluid are moving. The shear acting between two walls and

the layer just next to it is called the wall shear and is denoted by Tw. The ratio

of two important forces determined by the Reynolds number plays an important

role in determination of the thickness of the boundary layer. When the Reynolds

number has a low value, the denominator of it in other words the viscous forces

dominate and have more effect and in result the flow is laminar and for vice versa,

the inertial forces dominate and they result in the turbulent flow”. There are two

types of the boundary layer.

• Hydrodynamic (velocity) boundary layer
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• Thermal boundary layer

2.20.1 Hydrodynamic boundary layer

“A region of the fluid flow where the transition from zero velocity at the solid

surface to the free stream velocity at some extent far from the surface in the

direction normal to the flow takes place in a very thin layer, is known as the

hydrodynamic boundary layer.”

2.20.2 Thermal boundary layer [38]

“The heat transfer exchange surface and the free stream have a liquid or a gaseous

agent for heat transfer. From wall to free stream, we come across the change of

temperature of heat transfer agent. It increases from wall to the main stream.

The surface temperature is assumed to be equal to the temperature of the fluid

layer close to the wall inside the boundary and this temperature is equal to the

temperature of the bulk at some point in the fluid.”

2.20.3 Concentration boundary layer [38]

“The concentration boundary layer develops when there is a difference in concen-

tration of a component between the free stream and the surface. A concentration

profile develops, and the thickness of the concentration boundary layer is defined

as that point at which the difference in concentration between the fluid and the

surface is 99 percent of the difference in concentration between the free stream

fluid and the surface.”
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2.21 Viscous dissipation [40]

“The viscous dissipation is the destruction of fluctuating velocity gradients by the

action of viscous stresses.”

2.22 Micropolar fluid [38]

“Micropolar fluids are fluids with micro structure. They belong to a class of

fluids with non symmetric stress tensor that we shall call the polar fluids, and

include, as a special case, the well-established Navier-Stokes model of classical

fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent

fluids consisting of rigid, randomly oriented (or spherical) particles suspended in

a viscous medium, where the deformation of fluid particles is ignored.”

2.23 Nanofluid

A nanofluid is a conventional fluid containing the nanometer-sized particles.



Chapter 3

Radiative and Joule heating

effects in the MHD flow of a

micropolar fluid with partial slip

and convective boundary

condition

3.1 Introduction

In this chapter, the numerical study of the flow of micropoler fluid above a porous

stretching sheet in the presence of Joule heating, thermal radiation, flow on an

unsteady stretching surface and Magnetohydrodynamic with heat transfer through

moving fluid [36] is discuses. A proper similarity transformation is utilized to

convert the boundary layer equations into the nonlinear and coupled ordinary

differential equations. These ODEs are sorted out numerically by applying the

shooting mechanism. Graphical representations are also included to explain the

effect of evolving parameters against the above mentioned distributions. Finally,

the numerical outcomes are discussed at the end of the chapter.

20
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3.2 Problem Formulation

Figure 3.1: Geometry of the problem.

Assume that the fluid under discussion is taken as MHD two dimensional incom-

pressible microploar’s fluid which passes over porous stretching surface with slip

velocity. The governing equations (3.1) - (3.4) are,

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=

(
µ+ κ

ρ

)
∂2u

∂y2
− κ

ρ

∂N

∂y
+
σ

ρ
(E0B0 −B2

0u), (3.2)

u
∂N

∂x
+ v

∂N

∂y
=
γ∗

ρj

∂2N

∂y2
− κ

ρj
(2N +

∂u

∂y
), (3.3)

u
∂T

∂x
+ v

∂T

∂y
=

κ1
ρCp

∂2T

∂y2
+

(uB0 − E0)
2 σ

ρCp
+

1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2
. (3.4)

In (3.1) - (3.4), κ∗ the mean absorption coefficient, σ∗ the Stefen-Boltzman, T

the temperature and B0 the kinematic viscosity, B0 the applied magnetic field

strength, E0 the applied electric field, ν = µ
ρ
. The parameters κ and cp are

taken as constants and represents the permeability of porous media, the thermal

conductivity and specific heat of the fluid respectively. The associated BCs for
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the above system of equations are,

u = ax+ σ∗
[
(µ+ κ)

∂u

∂y
+ κN

]
, v = vw,

N = −n∂u
∂y
, −κ

(
∂T

∂y

)
= hf [Tf − T ] at y = 0,

u→ 0, N → 0, T → T∞, asy →∞.


Here N , j, κ1, α

∗, vw, and hf represent the micro-rotation or angular velocity, mi-

cro inertia density, thermal conductivity, slip coefficient, suction/injection velocity,

heat transfer coefficient respectively. Further, n is a constant and 0 ≤ n ≤ 1. Now

we convert the system of Eqs. (3.1) - (3.4) following the boundary conditions into

a unitless form. For this purpose, we use the following similarity transformation.

η =

√
a

ν
y, N = ax

√
a

ν
h(η), u =

∂ψ

∂y
, v = −∂ψ

∂x

ψ(x, y) =
√
aνxf(η), θ(η) =

T − T∞
Tf − T∞

.

 (3.5)

Here the parameters K, M , R, Ec, fw, Pr and α are the material parameter,

Hartmann number, radiation parameter, Eckert number, suction velocity, Prandtl

number and slip parameter respectively. These quantities are formulated as fol-

lows:

K =
κ

µ
,M2 =

σB2
0

ρa
, fw = −(aν)

−1
2 vw, P r =

µCp
κ
,

α = α∗µ

√
a

υ
,E =

E0

uwB0

, R =
4σ∗T 3

∞
κ∗κ1

.
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The detailed procedure for the conversion of equations (3.1) - (3.4) has been de-

scribed in the upcoming discussion.

• u =
∂ψ

∂y

=
√
avxf ′

(√
a

ν
y

)
∂

∂y

(√
a

ν
y

)
=
√
avxf ′

(√
a

ν
y

)(√
a

ν

)
= axf ′(η).

• ∂u
∂x

=
∂

∂x
(axf ′(η))

= af ′(η). (3.6)

• v = −∂ψ
∂x

= − ∂

∂x

(√
aνxf(η)

)
= −
√
aνf(η).

• ∂v
∂y

= − ∂

∂y

(√
aνf

(√
a

ν
y

))
= −
√
aνf ′

(√
a

ν
y

)(√
a

ν

)
= −af ′(η). (3.7)

Using (3.7) and (3.8) in (3.1),

∂u

∂x
+
∂v

∂y
= af ′(η)− af ′(η) = 0.

Hence the equation of continuity is identically satisfied.

Now we include below, the procedure for the conversion of (3.2) into dimensionless

form.

• ∂u

∂y
= ax

∂

∂y
f ′
(√

a

v
y

)
= axf ′′

(√
a

ν
y

)
∂

∂y

(√
a

ν
y

)
=
a

3
2x√
ν
f ′′(η).

• u∂u
∂x

= (axf ′(η)) (af ′(η)) = a2x(f ′(η))2. (3.8)

• v∂u
∂y

= −
√
aνf(η)

a
3
2x√
ν
f ′′(η) = −a2xf(η)f ′′(η). (3.9)
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Using (3.8) and (3.9), the left side of (3.2) becomes.

u
∂u

∂x
+ v

∂u

∂y
= a2x(f ′(η))2 − a2xf(η)f ′′(η)

= a2x
[
(f ′(η))2 − f(η)f ′′(η)

]
.

To convert the right side of (3.2) into the dimensionless form, the following pro-

cedure has been followed.

• ∂u

∂y
= ax

∂

∂y
f ′
(√

a

v
y

)
= axf ′′

(√
a

ν
y

)
∂

∂y

(√
a

ν
y

)
=
a

3
2x√
ν
f ′′(η).

• ∂2u

∂y2
=
a

3
2x√
v
f ′′′
(√

a

ν
y

)
∂

∂y

(√
a

ν
y

)
=
a2x

ν
f ′′′(η). (3.10)

• ∂N

∂y
= ax

√
a

ν

∂

∂y
h(η) = ax

√
a

ν
h′η

∂

∂y

(√
a

ν
y

)
=
a2x

ν
h′(η).

(3.11)

•
(
µ+ κ

ρ

)
∂2u

∂y2
=

(
µ+ κ

ρ

)
a2x

ν
f ′′′(η) = a2x

[(
µ+ κ

ρν

)
f ′′′(η)

]
= a2x

[(
µ+ κ

µ

)
f ′′′(η)

]
= a2x

[(
µ

µ
+
κ

µ

)
f ′′′(η)

]
.

= a2 (1 +K)xf ′′′(η).

(
∵=

κ

µ

)
(3.12)

• κ

ρ

∂N

∂y
=
κ

ρ

a2x

ν
h′(η) = a2x

[
κ

ρν
h′(η)

]
= a2x

[
κ

µ
h′(η)

]
= a2Kxh′(η). (3.13)

• σ
ρ

(E0B0 −B2
0u) =

σ

ρ

(
E0B0 −B2

0axf
′(η)
)

= a2x

[
σE0B0

ρa2x
− σB2

0

ρa
f ′(η)

]
= a2x

[(
σB2

0

ρa

)(
E0

axB0

)
− σB2

0

ρa
f ′(η)

]
= a2x

[
M2E −M2f ′(η)

] (
∵M2 =

σB2
0

ρa
,E =

E0

axB0

)
.

(3.14)
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Using (3.10) - (3.14) in the right side of (3.2), we get

(
µ+ κ

ρ

)
∂2u

∂y2
− κ

ρ

∂N

∂y
+
σ

ρ
(E0B0 −B2

0u)

= a2x [(1 +K) f ′′′(η)] + a2x [Kh′(η)] + a2x
[
M2E −M2f ′(η)

]
.

Hence the dimensionless form of (3.2) becomes.

ax2
[
(f ′(η))2 − f(η)f ′′(η)

]
= a2x [(1 +K) f ′′′(η)] + a2x [Kh′(η)]

+ a2x
[
M2E −M2f ′(η)

]
⇒
[
(f ′(η))2 − f(η)f ′′(η)

]
= [(1 +K) f ′′′(η)] + [Kh′(η)] +

[
M2E −M2f ′(η)

]
⇒ (1 +K)f ′′′ + ff ′′ − f ′2 −M2f ′ +Kh′ +M2E = 0.

Now we include below, the procedure for the conversion of (3.3) into dimensionless

form as follows,

• ∂N

∂x
= a

√
a

ν

∂

∂x

(
xh

(√
a

ν
y

))
=

a
3
2

√
ν
h(η).

• u∂N
∂x

= (axf ′(η))

(
a

3
2

√
ν
h(η)

)
=

a
5
2

√
v
xf ′(η)h(η). (3.15)

• v∂N
∂y

= −
(√

aνf(η)
) a2x
ν
h′(η)

= − a
5
2

√
ν
xf(η)h′(η). (3.16)

Using (3.15) and (3.16), the left side of (3.3) gets the following form:

u
∂N

∂x
+ v

∂N

∂y
=

a
5
2

√
ν
xf ′(η)h(η)− a

5
2

√
v
xf(η)h′(η)

=
a

5
2

√
ν
x [f ′(η)h(η)− f(η)h′(η)] . (3.17)
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To convert the right side of (3.3) into dimensionless form, we proceed as follows.

• ∂2N

∂y2
=

∂

∂y

(
a2x

ν
h′
√
a

ν
y

)
.

=
a2x

ν
h′′(η)

(√
a

ν

)
= a

5
2
x

v
3
2

h′′(η). (3.18)

• ∂u

∂y
= a

3
2
x√
ν
f ′′(η). (3.19)

• γ∗ =
(
µ+

κ

2

)
j = µ

(
1 +

κ

2µ

)
j = µ

(
1 +

K

2

)
j. (3.20)

• γ
∗

ρj

∂2N

∂y2
=
µ
(
1 + K

2

)
j

ρj
a

5
2
x

v
3
2

h′′(η)

= a
5
2
x√
ν

[
µ
(
1 + K

2

)
ρν

h′′(η)

]

= a
5
2
x√
ν

[
µ
(
1 + K

2

)
µ

h′′(η)

]

= a
5
2
x√
ν

[(
1 +

K

2

)
h′′(η)

]
. (3.21)

• κ
ρj

(
2N +

∂u

∂y

)
=

κ

ρj

[
2ax

√
a

ν
h(η) + a

3
2
x√
v
f ′′(η)

]
= a

5
2
x√
ν

[
κ

ρja
(2h(η) + f ′′(η))

]
= a

5
2
x√
ν

[
κ

ρaν
a

(2h(η) + f ′′(η))

] (
∵ j =

ν

a

)
= a

5
2
x√
ν

[
κ

ρν
(2h(η) + f ′′(η))

]
= a

5
2
x√
ν

[K (2h(η) + f ′′(η))] . (3.22)

Using (3.18) and (3.22) the dimensionless form of right side (3.3) is as follows.

γ∗

ρj

∂2N

∂y2
− κ

ρj
(2N +

∂u

∂y
)

= a
5
2
x√
ν

[(
1 +

K

2

)
h′′(η)

]
− a

5
2
x√
ν

[K (2h(η) + f ′′(η))]
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Therefore the dimensionless form (3.3) becomes:

⇒ a
5
2

√
ν
x [f ′(η)h(η)− f(η)h′(η)] = a

5
2
x√
ν

(
1 +

K

2

)
h′′(η)

− a
5
2
x√
ν

[K (2h(η) + f ′′(η))]

⇒ [f ′(η)h(η)− f(η)h′(η)] =

(
1 +

K

2

)
h′′(η)−K (2h(η) + f ′′(η))

⇒
(

1 +
K

2

)
h′′ + fh′ − f ′h−K (2h+ f ′′) = 0

Now we include below, the procedure for the conversion of (3.4) into the dimen-

sionless form.

• θ(η) =
T − T∞
Tf − T∞

⇒ T = (Tf − T∞)θ(η) + T∞. (3.23)

• ∂T

∂x
= 0. (3.24)

• u
∂T

∂x
= 0. (3.25)

• ∂T

∂y
=

√
a

ν
(Tf − T∞)θ′(η). (3.26)

• v
∂T

∂y
= −a (Tf − T∞)θ′(η)f(η). (3.27)

Using (3.23) and (3.27) the left side of (3.28) gets the following form:

u
∂T

∂x
+ v

∂T

∂y
= 0− θ′(η)f(η)a(Tf − T∞)

= −a(Tf − T∞)θ′(η)f(η). (3.28)
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To convert the right side of (3.4) into the dimensionless form, we proceed as follows.

• ∂2T

∂y2
=
a

ν
(Tf − T∞)θ′′(η).

• κ1
ρCp

∂2T

∂y2
=

κ1
ρcp

a

ν
(Tf − T∞)θ′′(η). (3.29)

• (uB0 − E0)
2 σ

ρcp
=

(u2B2
0 + E2

0 − 2E0uB0)

ρCp
σ

=
(a2x2(f ′(η))2B2

0 + E2
0 − 2E0axf

′(η)Bo)

ρcp
σ (∵ u = axf ′(η))

= (ax)2B2
0

(
(f ′(η))2 +

E2
0

(ax)2B2
0
− 2E0

(ax)B0
f ′(η)

)
ρCp

σ (∵ uw = ax)

= u2wB
2
0σ

((f ′(η))2 + E2 − 2Ef ′(η))

ρCp
.

(
∵ E =

E0

(ax)B0

)
.

(3.30)

• 1

ρcp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2
=

1

ρCp

16σ∗

3κ∗
T ∗∞

a

ν
(η) (Tf − T∞) θ′′

=
4κ1

3ρCp

4σ∗T ∗∞
κ1κ∗

a

ν
(Tf − T∞) θ′′(η)

=
4

3

a

ν

κ1R

ρCp
θ′′(η) (Tf − T∞) .

(
∵ R =

4σ∗

κ1κ∗
T ∗∞

)
(3.31)

Using (3.29)-(3.31), the dimensionless form of the right side of (3.4) is as follows.

κ1
ρCp

∂2T

∂y2
+

(uB0 − E0)
2 σ

ρcp
+

1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2

=
κ1
ρCp

a

ν
(Tf − T∞) θ′′(η) + u2wB

2
0σ

((f ′(η))2 + E2 − 2Ef ′(η))

ρCp

+
4

3

a

ν

κ1R

ρCp
θ′′(η) (Tf − T∞)

= a (Tf − T∞)

[
κ1
ρνCp

(
1 +

4R

3

)
θ′′(η)

]
+ a (Tf − T∞)

[(
u2w

Cp (Tf − T∞)

)(
B2

0σ

ρa

)(
f ′2(η) + E2 − 2Ef ′(η)

)]
= a (Tf − T∞)

[
κ1
µCp

(
1 +

4R

3

)
θ′′(η) + EcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
(
∵ Ec =

u2w
Cp (Tf − T∞)

,M2 =
B2

0σ

ρa

)
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=
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η) +

µCp
κ1

EcM2
(
f ′2(η) + E2 − 2Ef ′(η)

)]
=
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
.(

∵ Pr =
µCp
κ1

)
(3.32)

Therefore the dimensionless form of (3.4) becomes:

u
∂T

∂x
+ v

∂T

∂y
=

κ1
ρCp

∂2T

∂y2
+

(uB0 − E0)
2 σ

ρCp
+

1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2

− a(Tf − T∞)θ′(η)f(η) =
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η)

]
+
aκ1
µCp

(Tf − T∞)
[
PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
⇒ −µCp

κ1
θ′(η)f(η) =

(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)
⇒ −Prθ′(η)f(η) =

(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)
⇒
(

1 +
4R

3

)
θ′′ + Prθ′f + PrEcM2

(
f ′2 + E2 − 2Ef ′

)
= 0

Rewriting the converted ODEs together,

(1 +K)f ′′′ + ff ′′ − f ′2 +Kh′ −M2f ′ +M2E = 0, (3.33)(
1 +

K

2

)
h′′ + fh′ − f ′h′ −K(2h+ f ′′) = 0, (3.34)(

1 +
4R

3

)
θ′′ + Prfθ′ +M2Ec[f ′2 + E2 − 2Ef ′] = 0, (3.35)
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The BCs are of the form,

• v = νw,

⇒ −
√
aνf(η) = νw

⇒ f(η) = − νw√
aν

⇒ f(η) = −(aν)−
1
2νw

⇒ f(η) = fw.
(
∵ fw = −(aν)−

1
2νw

)
• N = −n∂u

∂y

⇒ ax

√
a

ν
h(η) = −n a

3
2

√
ν
xf ′′(η)

⇒ h(η) = −nf ′′(η).

• u = ax+ α∗
[
(µ+ κ)

∂u

∂y
+ κN

]
⇒ axf ′(η) = ax+ α∗

[
(µ+ κ)

a
3
2

√
ν
xf ′′(η) + κax

√
a

ν
h(η)

]

⇒ f ′(η) = 1 + α∗
[
(µ+ κ)

√
a

ν
f ′′(η) + κ

√
a

ν
h(η)

]
⇒ f ′(η) = 1 + α∗µ

√
a

ν
f ′′(η) + α∗κ

√
a

ν
f ′′(η) + α∗κ

√
a

ν
h(η)

⇒ f ′(η) = 1 + αf ′′(η) + αKf ′′(η) + αKh(η)

(
∵ K =

κ

µ
, α = α∗µ

√
a

ν

)
⇒ f ′(η) = 1 + α(1 +K)f ′′(η)− αKnf ′′(η) (∵ h(η) = −nf ′′(η))

⇒ f ′(η) = 1 + α(1 +K −Kn)f ′′(η)

⇒ f ′(η) = 1 + α (1 +K(1− n)) f ′′(η).

• ht [Tf − T ] = −κ∂T
∂y

⇒ ht [Tf − T ] = −κ
[
θ′(η)

√
a

ν
(Tf − T∞)

]
⇒ θ′(η) = − ht (Tf − T )√

a
ν
(Tf − T∞)

⇒ θ′(η) = −hf
κ

√
a

ν
[Tf − θ(η) (Tf − T∞)− T∞]

⇒ θ′(η) = −γ (1− θ(η)) .

(
∵ γ =

h

κ
√

a
ν

)
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• u = axf ′(η), u→ 0, as y →∞

⇒ axf ′(∞) = 0

⇒ f ′(∞) = 0.

• N = ax

√
a

ν
h(η), N → 0, as y →∞

⇒ ax

√
a

ν
h(η) = 0

⇒ h(∞) = 0.

• θ(η) =
T − T∞
Tf − T∞

, T → T∞ as y →∞

⇒ θ(∞) = 0.

Rewriting the converted ODEs together,

f(η) = fw, f
′(η) = 1 + α(1 +K)f ′′(η),

h(η) = −nf ′′(η), θ′(η) = −γ(1− θ(η)), at η = 0,

f ′(η) = 0, h(η) = 0, θ(η) = 0, as η →∞.

 (3.36)

The local skin friction and the Nuselt numbers are characterized as

Cfx =
2τw
ρ(ax)2

, (3.37)

Nux =
xqw

κ(Tf − T∞)
. (3.38)

where τw and qw are given by

τw =

(
(µ+ κ)

∂u

∂y
+ κN

)
y=0

, (3.39)

qw = −κ1
(
∂T

∂y

)
y=0

. (3.40)

The dimensionless form of the above quantities becomes

1

2
CfxRe

1
2
x = (1 + (1− n)K)f ′′(0), (3.41)

NuRex
−1/2x = −1

3
[3 + 4Rd ((Qw − 1) θ(0) + 1)3]θ

′
(0). (3.42)
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Where the local Reynolds number is defined as

Rex = ux/v. (3.43)

3.3 Solution methodology

The analytic solution of the boundary value problem (3.33) - (3.36) cannot be

found because these equation are non-linear and coupled. So, we use a numerical

technique, i.e.,the shooting scheme with fourth order Runge Kutta method. In

order to solve the system of ODEs (3.33) - (3.35), with boundary conditions (3.36),

utilizing the shooting method, first of all we have to change these equations into

a system of first order differential expressions. Let us use the following notations.

f = y1, f ′ = y2, f ′′ = y3,

h = y4, h′ = y5,

θ = y6, θ′ = y7.

 (3.44)

The system of equation (3.33) - (3.35) following the boundary limits are (3.36)

changed into a system of seven first order differential expressions.

y′1 = y2, y1(0) = fw,

y′2 = y3, y2(0) = 1 + α(1 +K)s,

y′3 =
(y22 − y1y3 −Ky5 +M2y2 −M2E)

(1 +K)
, y3(0) = s,

y′4 = y5, y4(0) = −ns,

y′5 =
2 (y2y5 +K (2y4 + y3)− y1y5)

(2 +K)
, y5(0) = t,

y′6 = y7, y6(0) = u,

y′7 =
3 (−Pry1y7 −M2Ec [y22 + E2 − 2Ey2])

(3 + 4R)
, y7(0) = −γ(1− u).



(3.45)
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In the above system of equations (3.45), the missing initial conditions s, t, and u

are to be chosen such that

y2(η∞, s, t, u) = 0,

y4(η∞, s, t, u) = 0,

y6(η∞, s, t, u) = 0.

 (3.46)

To solve the system of equations (3.46), we use the Newton’s method which has

the following iterative scheme


s(n+1)

t(n+1)

u(n+1)

 =


s(n)

t(n)

u(n)

−


∂y2
∂s

∂y2
∂t

∂y2
∂u

∂y4
∂s

∂y4
∂t

∂y4
∂u

∂y6
∂s

∂y6
∂t

∂y6
∂u


−1

(η∞,s(n),t(n),u(n))


y
(n)
2

y
(n)
4

y
(n)
6


(η∞,s(n),t(n),u(n))

Let us now use the following notations:

∂y1
∂s

= y8,
∂y2
∂s

= y9, ...
∂y7
∂s

= y14,

∂y1
∂t

= y15,
∂y2
∂t

= y16, ...
∂y7
∂t

= y21,

∂y1
∂u

= y22,
∂y2
∂u

= y23, ...
∂y7
∂u

= y28,

With these new notation, the Newton’s iterative scheme get the following form.


s(n+1)

t(n+1)

u(n+1)

 =


s(n)

t(n)

u(n)

−

y9 y16 y23

y11 y18 y25

y13 y20 y27


−1

(η∞,s(n),t(n),u(n))


y
(n)
2

y
(n)
4

y
(n)
6


(η∞,s(n),t(n),u(n))

For the execution of the above iterative scheme, we differentiate equations (3.45)

w.r.t each variable s, t, and u to have another IVP consisting of system of twenty

one ODEs. Rewriting all the twenty eight ODEs together along with the corre-

sponding ICs we have the following IVP.
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y′1 = y2, y1(0) = fw,

y′2 = y3, y2(0) = 1 + α(1 +K)s,

y′3 =
1

(1 +K)

(
y22 − y1y3 −Ky5 +M2y2 −M2E

)
, y3(0) = s,

y′4 = y5, y4(0) = −ns,

y′5 =
2

(2 +K)
(y2y5 +K (2y4 + y3)− y1y5) , y5(0) = t,

y′6 = y7, y6(0) = u,

y′7 =

3

(3 + 4R)

(
−Pry1y7 −M2Ec

[
y22 + E2 − 2Ey2

])
, y7(0) = −γ(1− u),

y′8 = y9, y8(0) = 0,

y′9 = y10, y9(0) = α(1 +K),

y′10 =
1

(1 +K)

(
2y2y9 +M2y9 − y9y10 − y3y8 −Ky12

)
, y10(0) = 1,

y′11 = y12, y11(0) = −n,

y′12 =

2

(2 +K)
(y2y11 + y4y9 +K (2y11 + y10)− y1y12 − y5y8) , y12(0) = 0,

y′13 = y14, y13(0) = 0,

y′14 =

3

(3 + 4R)

(
−Pr(y1y14 + y7y8)−M2Ec [2y2y9 − 2Ey9]

)
, y14(0) = 0,

y′15 = y16, y15(0) = 0,

y′16 = y17, y16(0) = 0,

y′17 =

1

(1 +K)

(
2y2y16 +M2y16 − y1y17 − y15y3 −Ky19

)
, y17(0) = 0,

y′18 = y19, y18(0) = 0,

y′19 =

2

(2 +K)
(y2y18 + y4y16 +K (2y18 + y17)− y1y19 − y5y15) , y19(0) = 1,

y′20 = y21, y20(0) = 0,
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y′21 =

3

(3 + 4R)

(
−Pr(y1y21 + y7y15)−M2Ec [2y2y16 − 2Ey16]

)
, y21(0) = 0

y′22 = y23, y22(0) = 0,

y′23 = y24, y24(0) = 0,

y′24 =

1

(1 +K)

(
2y2y23 +M2y23 − y1y24 − y22y3 −Ky26

)
, y24(0) = 0,

y′25 = y26, y26(0) = 0,

y′26 =

2

(2 +K)
(y2y25 + y4y23 +K (2y25 + y24)− y1y26 − y5y22) , y26(0) = 0,

y′27 = y28, y27(0) = 1,

y′28 =

3

(3 + 4R)

(
−Pr(y1y28 + y7y22)−M2Ec [2y2y23 − 2Ey23]

)
, y28(0) = 0.

The shooting method requires the initial guess for y3(0), y5(0) and y6(0) , and by

the Newton’s mechanism we update each guess until we obtain an approximate

result for our problem. To strengthen the reliability of the obtained numerical re-

sults by the shooting method , we compare these by the numerical results acquired

by the MATLAB solver bvp4c. and found them in excellent agreement.

3.4 Results and discussion

The objective of this section is to analyze the numerical results displayed in the

shape of graphs and tables. The computations are carried out for various val-

ues of the material parameter K, Hartmann number M , electric parameter E,

radiation parameter R, Eckert number Ec, suction velocity fw, slip parameter

α, and Prandtl number Pr and the impact of these parameters on the velocity,

microrotation and temperature profiles is also discussed in detail.
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3.4.1 Impact of slip parameter and suction parameter on

the unitless velocity profile

The effect of slip parameter α on the dimensionless velocity profile f ′(η) is pre-

sented in Figure 3.2. Increasing the values of the slip parameter α reduces the

velocity field and particular boundary thickness as depicted in Figure 3.2.. The

impact of the section parameter fw on the dimensionless velocity profile f ′(η) is

presented in Figure 3.3. Velocity profile diminishes and accompanied with bound-

ary layer width increases for gradually growing values of the suction parameter

fw.

Figure 3.2: Impact of α on the unitless velocity f ′(η)

Figure 3.3: Impact of fw on the unitless velocity f ′(η).



37

3.4.2 Impact of material parameter on the unitless velocity

profile and dimensionless microrotation profile

The impact of the material parameter K on the dimensionless velocity profile f ′(η)

is presented in Figure 3.4. By increasing K, the velocity field reduces in the lower

half of the surface whereas it enhances in the upper half. The velocity is going to

reduce initially with the mounting values of the material parameter K. However

for η > 1 there is an elevation in the velocity profile. Figure 3.5 shows the impact

of the material parameter K on the dimensionless micrototation profile h(η). By

increasing the values of K the microrotation decreases.

Figure 3.4: Impact of K on the unitless velocity f ′(η).

Figure 3.5: Impact of K on the unitless microrotation h(η).
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3.4.3 Impact of Hartmann number on the unitless velocity

profile and dimensionless energy profile

Figure 3.6 and 3.7 depict the impact of Hartman number M on the velocity profile

f ′(η) and the dimensionless energy profile θ(η). It is shows that the huge values

of the magnetic parameter M case a fall down the velocity profile f ′(η) and an

increase in the dimensionless energy profile θ(η), since the magnetic field intro-

duces a force i.e. the Lorentz force which opposes the stream and the velocity

distribution.

Figure 3.6: Impact of M on the unitless velocity f ′(η).

Figure 3.7: Impact of M on the unitless energy θ(η).
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3.4.4 Impact of Biot number and Eckert number on the

dimensionless energy profile

Figure 3.8 demonstrates the impact of the Biot number γ on the temperature θ(η).

We notice that the enhanced values of Biot number γ cause a higher energy and

thicker the thermal boundary layer thickness. Figure 3.9 displays the influence

of Eckert number Ec on the energy profile. Energy profile increases when the

Eckert number is increased. Due to friction, the heat energy is kept in owing to

accelerating values of Eckert number, which results in the enhancement of the

temperature profile.

Figure 3.8: Impact of γ on the unitless energy θ.

Figure 3.9: Impact of Ec on the unitless energy θ(η).
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3.4.5 Skin-friction coefficient and Nusselt number

The Nusselt number Nux is of great interest for engineers. In Table 3.1, the

numerical analysis of Nux for different physical parameters under discussion, is

displayed. Here, we use the shooting technique with the Runge-Kutta fourth order

mechanism. We compare the results obtained by the shooting method with those

obtained by the matlab code bvp4c and both are found in an excellent agreement.

It is found that the inflation in the radiation parameter R, γ, electric parameter E,

Eckert number Ec, and Prandtl number Pr results a rise in the Nusselt number.

Moreover, the Nusselt number has inverse relation with Hartman number M and

the slip parameter α.

NuRex
−1/2

Parameters Ramzan et al. [36] Present
M R E α γ Ec Pr HAM Shooting bvp4c
0.2 0.1 0.2 0.1 0.1 0.2 1.0 0.08591 0.0851094 0.0851409
0.3 0.08595 0.0848762 0.0848762
0.6 0.08490 0.0837395 0.0837395
0.9 0.08381 0.0833257 0.0820566
0.2 0.3 0.08540 0.0833257 0.0833257

0.6 0.84400 0.0811546 0.0811546
0.9 0.08351 0.0794392 0.0794392
0.1 0.3 0.08580 0.0851475 0.0851475

0.6 0.08605 0.0849750 0.0849750
0.9 0.08599 0.0833698 0.0843369
0.2 0.3 0.08515 0.0842594 0.0842594

0.6 0.08440 0.0833190 0.0833190
0.9 0.08339 0.0825988 0.0825988
0.1 0.3 0.20212 0.1972475 0.1972475

0.6 0.34401 0.2941681 0.2941681
0.9 0.36662 0.3517867 0.3517867
0.1 0.3 0.08544 0.0850035 0.0850035

0.6 0.08455 0.0847210 0.0847210
0.9 0.08355 0.0844384 0.0844384
0.2 0.08745 0.0872886 0.0872828

2.0 0.08951 0.0901095 0.0901959
3.0 0.09194 0.0922698 0.0922698
4.0 0.09340 0.0935145 0.0935145

Table 3.1: Numerical results of NuRex
−1/2 for different values of Pr, K, M , R,

E, α, γ, and Ec
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3.5 Summary

In this chapter, the numerical study of the flow of micropoler fluid past a porous

stretching sheet in the presence of Joule heating, partial slip and magnatohydrody-

namic (MHD), is presented. The properties of the fluid like viscosity and thermal

conductivity are taken independent of temperature. The dimensionless velocity,

dimensionless temperature and dimensionless micro-rotation are analyzed and pre-

sented in the form of graphs and tables. We present the Nusselt number in the

tabular form for different values of the distinctive physical parameters. From the

above study, we can make the following conclusions.

• The material parameter K diminishes the micro-rotation and distributions

of velocity.

• The slip parameter α diminishes the micro-rotation and the velocity distri-

butions.

• The energy failed with its boundary layer thickness inflated against the

mounting values of the electrical field parameter E.

• The mounting values of the Hartmann number M decrease the velocity dis-

tribution and increase the energy field.



Chapter 4

Magneto-micropolar nanofluid

flow over a convectively heated

sheet with nonlinear radiation

and viscous dissipation

4.1 Introduction

In this chapter, we extend the flow model of Ramzan et al. [36] presented in the

previous chapter in which the effect of micropoler fluid over a porous stretching

sheet in the presence of Joule heating, mixed convection and magnetohydrodynam-

ics with convective boundary conditions is discussed. Further, keeping in view the

importance of nanofluids, their effect is also incorporated during the modeling pro-

cess. The importance of thermal radiation can be seen in the processes which are

performed at high temperature under isothermal and non-isothermal situations.

The proper knowledge of thermal radiation is required during such processes to

achieve the best quality final product. In most of the cases, a linear thermal ra-

diation is considered, whereas for the higher temperature processes this yields a

noticeable error. So a nonlinear temperature dependent thermal radiation effect

42
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has been considered in the present chapter. At the boundary, the slip conditions

are considered as discussed in Chapter 3. The nonlinar PDEs are converted into a

set of ODEs by employing a proper similarity transformation. Numerical solution

of these modeled ODEs are acquired by using the shooting method. The final part

of chapter contains the outcomes for some physical parameters affecting the flow

and heat transfer. Significance of different physical parameters on dimensionless

velocity and temperature are elaborated through graphs and tables.

4.2 Problem formulation

We have consider the dimensionless steady, incompressible magneto micropolar

nanofluid flow over the permeable stretching sheet with slip velocity and convective

boundary condition. The geometry of the flow model is shown in Figure 4.1.

Figure 4.1: Geometry of the folw under dissection.
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The associated equations for the flow model are given in (4.1)-(4.5), which under

boundary layer approximation can be written as,

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
=

(
µ+ κ

ρ

)
∂2u

∂y2
− κ

ρ

∂N

∂y
+
σ

ρ
(E0B0 −B2

0u) (4.2)

u
∂N

∂x
+ v

∂N

∂y
=
γ∗

ρj

∂2N

∂2y
− κ

ρj
(2N +

∂u

∂y
), (4.3)

u
∂T

∂x
+ v

∂T

∂y
=

κ1
ρCp

∂2T

∂y2
+

(uB0 − E0)
2 σ

ρCp
+

1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2

+

(
µ+ κ

ρCp

)(
∂u

∂y

)2

+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]
, (4.4)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
. (4.5)

The associated boundary conditions for the above system of equations are,

u = ax+ σ∗
[
(µ+ κ)

∂u

∂y
+ κN

]
, v = vw,

N = −n∂u
∂y
, −κ

(
∂T

∂y

)
= hf [Tf − T ],

−DB
∂C

∂y
= hm(cf − c), at y = 0,

u→ 0, N → 0, T → T∞, c→ c∞, as y →∞.


(4.6)

4.3 Solution of problem

In this portion we convert the system of (4.1) - (4.5) along with the boundary

conditions (4.6) into a unitless form. To find out the solution of PDEs we use the

following similarity transformation.

η =

√
a

ν
y, N = ax

√
a

ν
h(η), u =

∂ψ

∂y
, v = −∂ψ

∂x
,

ψ(x, y) =
√
aνxf(η), φ(η) =

C − C∞
Cf − C∞

, and θ(η) =
T − T∞
Tf − T∞

.

 (4.7)
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Here the parameters K, M , R, Ec, fw, α, Pr, Le, Ec, Nb and Nt are the material

parameter, Hartman number, radiation parameter, Eckert number, suction/in-

jection velocity, slip parameter, Prandtl number, Lewis number, Eckert number,

Brownian motion parameter and Thermophoresis parameter respectively. These

quantities are formulated as follows:

K =
κ

µ

M2 =
σB2

0

ρa

fw = −(aν)
−1
2 vw

Pr =
µCp
κ

α = α∗µ

√
a

υ

E =
E0

uwB0

R =
4σ∗T 3

∞
κ∗κ1

Le =
α

DB

Ec =
u2w

Cp(Tf − T∞)

Nb =
τDB

ν

(ρc)p
(ρc)f

(Cf − C∞)

Nt =
DT (ρc)p
T∞(ρc)fν

(Tf − T∞).

The detailed procedure for conversion of equation (4.1)-(4.3) as we have alraedy

computed in chapter 3. Now the detailed procedure for conversion of equation

(4.4) and (4.5) has been described in the upcomming discusion.
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• θ(η) =
T − T∞
Tf − T∞

.

⇒ T = (Tf − T∞)θ(η) + T∞, (4.8)

• ∂T

∂x
= 0. (4.9)

• u
∂T

∂x
= 0. (4.10)

• ∂T

∂y
= θ′(η)

√
a

ν
(Tf − T∞). (4.11)

• v
∂T

∂y
= −θ′(η)f(η)a (Tf − T∞). (4.12)

Using (4.10) and (4.12) the left side of (4.4) gets the following form:

u
∂T

∂x
+ v

∂T

∂y
= 0− θ′(η)f(η)a(Tf − T∞)

= −a(Tf − T∞)θ′(η)f(η). (4.13)

To convert the right side of (4.4), into dimensionless form, we proceed as follows.

• ∂2T

∂y2
=
a

ν
(Tf − T∞)θ′′(η).

• κ1
ρCp

∂2T

∂y2
=

κ1
ρCp

a

ν
(Tf − T∞)θ′′(η). (4.14)

• (uB0 − E0)
2 σ

ρCp
=

(u2B2
0 + E2

0 − 2E0uB0)

ρCp
σ

=
(a2x2(f ′(η))2B2

0 + E2
0 − 2E0axf

′(η)B0)

ρCp
σ (∵ u = axf ′(η))

= (ax)2B2
0

(
(f ′(η))2 +

E2
0

(ax)2B2
0
− 2E0

(ax)B0
f ′(η)

)
ρCp

σ (∵ uw = ax)

= u2wB
2
0σ

((f ′(η))2 + E2 − 2Ef ′(η))

ρCp

(
∵ E =

E0

(ax)B0

)
.

(4.15)

• 1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2
=

1

ρCp

16σ∗

3κ∗
T ∗∞

a

ν
θ′′(η) (Tf − T∞)
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=
4κ1

3ρCp

4σ∗T ∗∞
κ1κ∗

a

ν
θ′′(η) (Tf − T∞)

=
4

3

a

ν

κ1R

ρCp
(Tf − T∞) θ′′(η).

(
∵ R =

4σ∗

κ1κ∗
T ∗∞

)
(4.16)

•
(
µ+ κ

ρCp

)(
∂u

∂y

)2

=

(
µ+ κ

ρCp

)(
a

3
2x√
ν

)2

(f ′′(η))
2

=

(
µ+ κ

ρν

)(
a3x2

cp

)
(f ′′(η))

2

=

(
µ+ κ

µ

)(
(ax)2a

Cp

)
(f ′′(η))

2
(∵ uw = ax), (µ = ρν)

=

(
µ

µ
+
κ

µ

)(
u2wa

cp

)
(f ′′(η))

2

= (1 +K)

(
u2wa

Cp

)
(f ′′(η))

2

(
∵ K =

κ

µ

)
=

[
(1 +K)

(
u2w

Cp(Tf − T∞)

)(
νρCp
κ1

)]
(f ′′(η))

2(
aκ1
ρCp

)
(Tf − T∞)

=
[
(1 +K)EcPr (f ′′(η))

2
]( aκ1

νρCp

)
(Tf − T∞). (4.17)

∵ Ec =
u2w

Cp(Tf − T∞)
, P r =

νρCp
κ1

• φ(η) =
(C − C∞)

(Cf − C∞)
.

⇒ φ(η) (Cf − C∞) = (C − C∞)

C = φ(η) (Cf − C∞) + C∞

• ∂C

∂y
=

∂

∂x

(
φ

(√
a

ν
y

)
(Cf − C∞) + C∞

)
(4.18)

=

√
a

ν
(Cf − C∞)φ′(η).

• τDB
∂T

∂y

∂C

∂y
= τ

(
DB

(√
a

ν

)
(Tf − T∞)θ′(η)

)(√
a

ν
(Cf − C∞)φ′(η)

)
= a

[
DB

ν

(ρc)p
(ρc)f

(Cf − C∞)θ′(η)φ′(η)

]
(Tf − T∞)

(
∵ τ =

(ρc)p
(ρc)f

)
= [Nbθ

′(η)φ′(η)] (Tf − T∞)a.

(
∵ Nb =

τDB

ν

(ρc)p
(ρc)f

(Cf − C∞)

)
(4.19)

• τ
DT

T∞

(
∂T

∂y

)2

= τ
DT

T∞

((√
a

ν

)
(Tf − T∞)θ′(η)

)2

=

[
DT (ρc)p
T∞(ρc)fν

(Tf − T∞)(θ′(η))2
]

(Tf − T∞)a

=
[
Nt(θ

′(η))2
]

(Tf − T∞)a

(
∵ Nt =

DT (ρc)p
T∞(ρc)fν

(Tf − T∞)

)
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=
[
Nt(θ

′(η))2
]

(Tf − T∞)a. (4.20)

• θ(η) =
T − T∞
Tf − T∞

,

⇒ T = θ(Tf − T∞) + T∞ = T∞

[(
Tf
T∞

)
θ(η) + 1

]
,

⇒ T = T∞ [(Qw − 1)θ(η) + 1] .

• ∂T

∂y
= T∞(Qw − 1)

∂T

∂y
.

• qr = −4σ∗

3κ∗
∂T 4

∂y
= −16σ∗

3κ∗
T ∗
∂T

∂y

= −16σ∗T ∗∞
3κ∗

[(Qw − 1)θ(η) + 1]3
∂T

∂y
.

• 1

ρCp

∂qr
∂y

= −16σ∗T ∗

3κ∗ρcp

[
((Qw − 1)θ(η) + 1)3

∂2T

∂y2

]
− 16σ∗T ∗

3κ∗ρcp

[
∂T

∂y
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)

∂θ

∂y

]
= −16σ∗T ∗∞

3κ∗ρCp

[
((Qw − 1)θ(η) + 1)3

a

ν
(Tf − T∞)θ′′(η)

]
− 16σ∗T ∗∞

3κ∗ρCp

[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)

]
[
θ′(η)

√
a

ν
(Tf − T∞)

1

(Tf − T∞)

√
a

ν
(Tf − T∞)θ′(η)

]
= −16σ∗T ∗∞

3κ∗κ1

κ1a

ρCpν

[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 16σ∗T ∗∞

3κ∗κ1

κ1a

ρCpν

[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
(Tf − T∞)

= −4Rd

3Pr
a(Tf − T∞)

[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3Pr
a(Tf − T∞)

[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
= −4Rd

3Pr

νρCp
κ1

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3Pr

νρCp
κ1

κ1
νρCp

a(Tf − T∞)[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
= −4Rd

3Pr
Pr

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3Pr
Pr

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
= −4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
.
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Using Eqs. (4.14)-(4.20), the dimensionless form of right side (4.4) is as follows.

κ1
ρCp

∂2T

∂y2
+

(uB0 − E0)
2 σ

ρCp
+

1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2
+

(
µ+ κ

ρCp

)(
∂u

∂y

)2

+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]

=
κ1
ρCp

a

ν
(Tf − T∞) θ′′(η)

+ u2wB
2
oσ

((f ′)2(η) + E2 − 2Ef ′(η))

ρCp
+

4

3

a

ν

κ1R

ρcp
θ′′(η) (Tf − T∞)

+
[
(1 +K)EcPr (f ′′(η))

2
]( aκ1

ρCp

)
(Tf − T∞)

+ [Nbθ′(η)φ′(η)] (Tf − T∞)a+
[
Nt(θ

′(η))2
]
a(Tf − T∞)

− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
= a (Tf − T∞)

[
κ1
ρνCp

(
1 +

4R

3

)
θ′′(η)

]
+ a (Tf − T∞)

[(
u2w

Cp (Tf − T∞)

)(
B2

0σ

ρa

)(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
(1 +K)EcPr (f ′′(η))

2
]( κ1

νρCp

)
a(Tf − T∞)

+ [Nbθ′(η)φ′(η)] (Tf − T∞)a+
[
Nt(θ′(η))2

]
(Tf − T∞)a

− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
= a (Tf − T∞)

[
κ1
µCp

(
1 +

4R

3

)
θ′′(η) + EcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
(1 +K)EcPr (f ′′(η))

2
]( aκ1

νρCp

)
(Tf − T∞)

+
[
Nbθ

′(η)φ′(η) +Nt(θ
′(η))2

]
(Tf − T∞)a(

∵ Ec =
u2w

Cp (Tf − T∞)
,M2 =

B2
oσ

ρa

)
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
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=
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η) +

µCp
κ1

EcM2
(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
(1 +K)EcPr (f ′′(η))

2
]( aκ1

νρCp

)
(Tf − T∞)

+
[
Nbθ′(η)φ′(η) +Nt(θ′(η))2

](νρCp
κ1

)(
κ1
νρcp

)
(Tf − T∞)a ∵ (µ = ρν)

− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
=
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
(1 +K)EcPr (f ′′(η))

2
]( κ1

νρCp

)
a(Tf − T∞)

+
[
Nbθ′(η)φ′(η) +Nt(θ′(η))2

]
Pr

(
κ1
µp

)
a(Tf − T∞)

(
∵ Pr =

µCp
κ1

)
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
=
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η) +

µcp
κ1

EcM
2
(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
aκ1
µCp

(Tf − T∞)
[
Nbθ′(η)φ′(η) +Nt(θ′(η))2

]
Pr

+

(
κ1
µCp

)
a(Tf − T∞)

[
(1 +K)EcPr (f ′′(η))

2
]

− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
. (4.21)

Hence the dimensionless form of (4.4) becomes.

u
∂T

∂x
+ v

∂T

∂y
=

κ1
ρCp

∂2T

∂y2
+

(uB0 − E0)
2 σ

ρCp
+

1

ρCp

16σ∗

3κ∗
T ∗∞

∂2T

∂y2

+

(
µ+ κ

ρCp

)(
∂u

∂y

)2

+ τ

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]
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⇒ −a(Tf − T∞)θ′(η)f(η)

=
aκ1
µCp

(Tf − T∞)

[(
1 +

4R

3

)
θ′′(η) +

µCp
κ1

EcM
2
(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
aκ1
µCp

(Tf − T∞)
[
Nbθ′(η)φ′(η) +Nt(θ′(η))2

]
Pr

+

(
κ1
µCp

)
a(Tf − T∞)

[
(1 +K)EcPr (f ′′(η))

2
]

− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

κ1
νρCp

a(Tf − T∞)
[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
⇒ −µCp

κ1
θ′(η)f(η)

=

[(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
Nbθ′(η)φ′(η) +Nt(θ′(η))2

]
Pr

+
[
(1 +K)EcPr (f ′′(η))

2
]
− 4Rd

3

[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
⇒ −Prθ′(η)f(η)

=

[(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
Nbθ′(η)φ′(η) +Nt(θ′(η))2

]
Pr

+
[
(1 +K)EcPr (f ′′(η))

2
]
− 4Rd

3

[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
⇒ Prθ

′(η)f(η) +

[(
1 +

4R

3

)
θ′′(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)]
+
[
Nbθ

′(η)φ′(η) +Nt(θ′(η))2
]
Pr

+
[
(1 +K)EcPr (f ′′(η))

2
]
− 4Rd

3

[
((Qw − 1)θ(η) + 1)3 θ′′(η)

]
− 4Rd

3

[
3 ((Qw − 1)θ(η) + 1)2 (Qw − 1)θ′2(η)

]
= 0

θ′′(η)

[
1 +

4Rd

3
((Qw − 1)θ(η) + 1)3

]
+ Prθ′(η)f(η) + PrEcM2

(
f ′2(η) + E2 − 2Ef ′(η)

)
+ 4Rd

(
(Qw − 1)θ(η) + 1)2(Qw − 1)θ′2(η)

)
+ (1 +K)EcPr (f ′′(η))

2

+ Pr
[
Nbθ′φ′ +Ntθ′2

]
= 0. (4.22)
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Now we conclude the procedure for conversion of (4.5) into the dimensionless form.

• ∂C
∂x

= 0. (4.23)

• u∂C
∂x

= axf ′(η)(0) = 0. (4.24)

• v∂C
∂y

= −
√
aνf(η)

(√
a

ν

)
(Cf − C∞)φ′(η)

= −a (Cf − C∞) [f(η)φ′(η)] . (4.25)

Using (4.24) and (4.25), the left side of (4.5) gets the following form:

u
∂C

∂x
+ v

∂C

∂y
= 0− a (Cf − C∞) [f(η)φ′(η)] ,

= −a (Cf − C∞) [f(η)φ′(η)] . (4.26)

To convert the right side of (4.5) into dimensionless form we proceed as follows.

• ∂2C

∂y2
=
a

ν
(Cf − C∞)φ′′(η). (4.27)

• ∂2T

∂y2
=
a

ν
(Cf − C∞) θ′′(η). (4.28)

•DB
∂2C

∂y2
= DB

a

ν
(Cf − C∞)φ′′(η). (4.29)

•DT
∂2T

∂y2
= DT

a

ν
(Cf − C∞) θ′′(η) (4.30)

• Nt =
DT (ρc)p(Tf − T∞)

(ρc)fT∞ν
. (4.31)

• Nb =
(ρc)pDB(Cf − C∞)

(ρc)fν
. (4.32)
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Using (4.27) - (4.32), the dimensionless form of right side of (4.5) is as follows.

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2

= DB
a

ν
(Cf − C∞)φ′′(η) +

DT

T∞

a

ν
(Tf − T∞) θ′′(η)

= DB
a

ν
(Cf − C∞)

[
φ′′(η) +

DT

T∞

(Tf − T∞)

DB (Cf − C∞)
θ′′(η)

]
= DB

a

ν
(Cf − C∞)

[
φ′′(η) +

DT

T∞

(Tf − T∞) (ρc)p(ρc)f
DB (Cf − C∞) (ρc)p(ρc)f

θ′′(η)

]

= DB
a

ν
(Cf − C∞)

φ′′(η) +
DT (ρc)p(Tf − T∞)

T∞ν(ρc)f

1
(ρc)pDB(Cf−C∞)

(ρc)fν

θ′′(η)


= DB

a

ν
(Cf − C∞)

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
. (4.33)

Therefore the dimensionless form of (4.5) becomes:

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2

⇒ −a (Cf − C∞) [f(η)φ′(η)] = DB
a

ν
(Cf − C∞)

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
⇒ − [f(η)φ′(η)] = DB

1

ν

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
⇒ − ν

DB

[f(η)φ′(η)] =

[
φ′′(η) +

Nt

Nb
θ′′(η)

]
⇒ −

(ν
α

)( α

DB

)
[f(η)φ′(η)] =

[
φ′′(η) +

Nt

Nb
θ′′(η)

] (
∵ Le =

(
α

DB

))
⇒ −PrLe [f(η)φ′(η)] =

[
φ′′(η) +

Nt

Nb
θ′′(η)

] (
∵ Pr =

(ν
α

))
⇒ φ′′ + PrLef(η)φ′ +

Nt

Nb
θ′′ = 0. (4.34)
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Rewriting the converted ODEs together,

(1 +K)f ′′′ + ff ′′ − f ′2 +Kh′ −M2f ′ +M2E = 0, (4.35)(
1 +

K

2

)
h′′ + fh′ − f ′h′ −K(2h+ f ′′) = 0, (4.36)

θ′′
[
1 +

4

3
Rd ((Qw − 1)θ + 1)3

]
+ Prfθ

′ +M2EcPr
[
f ′2 + E2 − 2Ef ′

]
+ 4Rd((Qw − 1)θ + 1)2((Qw − 1)θ′2) + (1 +K)EcPrf ′′2

+ Pr(Nbθ′φ′ +Ntθ′2) = 0, (4.37)

φ′′(η) + PrLefφ′ +
Nt

Nb
θ′′ = 0. (4.38)

The BCs are of the form,

• v = νw,

⇒ −
√
aνf(η) = νw

⇒ f(η) = − νw√
aν

⇒ f(η) = −(aν)−
1
2νw

⇒ f(η) = fw.
(
∵ fw = −(aν)−

1
2νw

)
• N = −n∂u

∂y

⇒ ax

√
a

ν
h(η) = −n a

3
2

√
ν
xf ′′(η)

⇒ h(η) = −nf ′′(η).

• u = ax+ α∗
[
(µ+ κ)

∂u

∂y
+ κN

]
⇒ axf ′(η) = ax+ α∗

[
(µ+ κ)

a
3
2

√
ν
xf ′′(η) + κax

√
a

ν
h(η)

]

⇒ f ′(η) = 1 + α∗
[
(µ+ κ)

√
a

ν
f ′′(η) + κ

√
a

ν
h(η)

]
⇒ f ′(η) = 1 + α∗µ

√
a

ν
f ′′(η) + α∗κ

√
a

ν
f ′′(η) + α∗κ

√
a

ν
h(η)

⇒ f ′(η) = 1 + αf ′′(η) + αKf ′′(η) + αKh(η)

(
∵ K =

κ

µ
, α = α∗µ

√
a

ν

)
⇒ f ′(η) = 1 + α(1 +K)f ′′(η)− αKnf ′′(η) (∵ h(η) = −nf ′′(η))
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⇒ f ′(η) = 1 + α(1 +K −Kn)f ′′(η)

⇒ f ′(η) = 1 + α (1 +K(1− n)) f ′′(η).

• ht [Tf − T ] = −κ∂T
∂y

⇒ ht [Tf − T ] = −κ
[
θ′(η)

√
a

ν
(Tf − T∞)

]
⇒ θ′(η) = − ht (Tf − T )√

a
ν
(Tf − T∞)

⇒ θ′(η) = −hf
κ

√
a

ν
[Tf − θ(η) (Tf − T∞)− T∞]

⇒ θ′(η) = −γ (1− θ(η)) .

(
∵ γ =

h

κ
√

a
ν

)
• u = axf ′(η), u→ 0, as y →∞

⇒ axf ′(∞) = 0

⇒ f ′(∞) = 0.

• N = ax

√
a

ν
h(η), N → 0, as y →∞

⇒ ax

√
a

ν
h(η) = 0

⇒ h(∞) = 0.

• θ(η) =
T − T∞
Tf − T∞

, T → T∞ as y →∞

⇒ θ(∞) = 0.

⇒ θ(∞) = 0.

• −DB
∂C

∂y
= hm (Cf − C∞)

⇒ hm (Cf − C∞) = −DB

[
φ′(η) (Cf − C∞)

√
a

ν

]
⇒ φ′(η) = − hm (Cf − C)

DB(Cf − C∞)
√

a
ν

⇒ φ′(η) = − hm
DB

√
a

ν

Cf − φ(Cf − C∞)− C∞
Cf − C∞

⇒ φ′(η) = − hm
DB

√
a

ν
(1− φ(η))

⇒ φ′(η) = −γ2(1− φ(η)).
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Rewriting the converted ODEs together,

f(η) = fw, f ′(η) = 1 + α(1 +K(1− n))f ′′(η),

h(η) = −nf ′′(η), θ′(η) = −γ(1− θ(η)),

φ′(η) = −γ2(1− φ(η)), at η = 0,

f ′(η) = 0, h(η) = 0, θ(η) = 0, φ(η) = 0, at η →∞.


(4.39)

The Nusselt number and the local skin friction are given as

Cfx =
2τw
ρ(ax)2

, (4.40)

Nux =
xqw

κ(Tf − T∞)
. (4.41)

where τw and qw are given by

τw =

(
(µ+ κ)

∂u

∂y
+ κN

)
y=0

, (4.42)

qw = −κ1
(
∂T

∂y

)
y=0

. (4.43)

The dimensionless form of the above quantities becomes

1

2
CfxRe

1
2
x = (1 + (1− n)K)f ′′(0), (4.44)

NuRex
−1/2x = −1

3
[3 + 4Rd ((Qw − 1) θ(0) + 1)3]θ

′
(0). (4.45)

Where the local Reynolds number is defined as,

Rex = ux/v. (4.46)

The Shewood number is given by

Shx(Rex)
−1/2 = −φ′(0) (4.47)
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4.4 Solution methodology

The analytic solution of the boundary value problem (4.35) - (6.39) cannot be

found because these equations are non linear and coupled. So, we use a numerical

technique, i.e., the shooting scheme with Runge-Kutta mechanism of fourth order.

In order to sorted out the system of ordinary differential Eqs. (4.35) - (6.38), with

the boundary conditions (4.39), using the shooting method, we have to first change

over these expressions into an arrangement of first order differential equations. Let

us use the following notations.

f = y1, f ′ = y2, f ′′ = y3,

h = y4, h′ = y5,

θ = y6, θ′ = y7,

φ = y8, φ′ = y9.


(4.48)
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The system of equation along with the boundary conditions converted into a set

of seven first ODEs.

y′1 = y2,

y′2 = y3,

y′4 = y5,

y′3 =
1

(1 +K)

(
y22 − y1y3 −Ky5 +M2y2 −M2E

)
,

y′5 =
2

(2 +K)
(y2y4 +K (2y4 + y3)− y1y5) ,

y′6 = y7,

y′7 =
1[

1 + 4
3
Rd ((Qw − 1)θ + 1)3

]

−M2EcPr (y22 + E2 − 2Ey2)−

4Rd ((Qw − 1)y6 + 1)2 (Qw − 1)y27

−(1 +K)EcPry23 − Pry1y7
−Pr (Nby7y9 +Nty27) ,

 ,

y′8 = y9,

y′9 = −PrLey1y9 −
Nt

Nb
y′7.


(4.49)

y1(0) = fw, y2(0) = 1 + α(1 +K(1− n))s, y3(0) = s, y4(0) = −ns,

y5(0) = t, y6(0) = u, y7(0) = −γ1(1− u), y8(0) = v, y9(0) = −γ2(1− v)


(4.50)

In the equations (4.50) the missing initial conditions y3(0), y5(0) and y6(0) are to

be chosen such that

y2(η∞, s, t, u, v) = 0,

y4(η∞, s, t, u, v) = 0,

y6(η∞, s, t, u, v) = 0,

y8(η∞, s, t, u, v) = 0.


(4.51)
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To solve the system of equations (4.51), we use the Newton’s method which has

the following iterative scheme


s(n+1)

t(n+1)

u(n+1)

v(n+1)

 =


s(n)

t(n)

u(n)

v(n)

−


∂y2
∂s

∂y2
∂t

∂y2
∂u

∂y2
∂v

∂y4
∂s

∂y4
∂t

∂y4
∂u

∂y4
∂v

∂y6
∂s

∂y6
∂t

∂y6
∂u

∂y6
∂v

∂y8
∂s

∂y8
∂t

∂y8
∂u

∂y8
∂v



−1

(η∞,s(n),t(n),u(n))


y
(n)
2

y
(n)
4

y
(n)
6

y
(n)
8


(η∞,s(n),t(n),u(n),v(n))

Let us now use the following notations:

∂y1
∂s

= y10,
∂y2
∂s

= y11, ...
∂y9
∂s

= y18,

∂y1
∂t

= y19,
∂y2
∂t

= y20, ...
∂y9
∂t

= y27,

∂y1
∂u

= y28,
∂y2
∂u

= y29, ...
∂y9
∂u

= y36,

∂y1
∂v

= y37,
∂y2
∂v

= y38, ...
∂y9
∂v

= y45.


(4.52)

With these new notation, the Newton’s iterative scheme get the following form.


s(n+1)

t(n+1)

u(n+1)

v(n+1)

 =


s(n)

t(n)

u(n)

v(n)

−

y9 y20 y29 y38

y13 y22 y31 y40

y15 y24 y33 y42

y17 y26 y35 y44



−1

(η∞,s(n),t(n),u(n),v(n))


y
(n)
2

y
(n)
4

y
(n)
6

y
(n)
8


(η∞,s(n),t(n),u(n),v(n))

For the execution of the above iterative scheme, we differentiate equations (4.52)

w.r.t each variable s, t, u and v to have another IVP consisting of system of thirty

seven ODEs. Rewriting all the fourty five ODEs together along with the corre-

sponding ICs the following IVP.
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y′1 = y2,

y′2 = y3,

y′4 = y5,

y′3 =
1

(1 +K)

(
y22 − y1y3 −Ky5 +M2y2 −M2E

)
,

y′5 =
2

(2 +K)
(y2y4 +K (2y4 + y3)− y1y5) ,

y′6 = y7,

y′7 =
1[

1 + 4
3
Rd ((Qw − 1)θ + 1)3

]

−M2EcPr (y22 + E2 − 2Ey2)−

4Rd ((Qw − 1)y6 + 1)2 (Qw − 1)y27

−(1 +K)EcPry23 − Pry1y7
−Pr (Nby7y9 +Nty27) ,

 ,

y′8 = y9,

y′9 = −PrLey1y9 −
Nt

Nb
y′7,

y′10 = y11,

y′11 = y12,

y′12 =
1

(1 +K)

(
−y1y12 − y10y3 +M2y11 + 2y2y11 −Ky14 −M2E

)
,

y′13 = y14,

y′14 =
2

(2 +K)
(y2y13 + y4y11 − y1y14 − y10y5 +K (2y13 + y12)) ,

y′15 = y16,

y′16 =
[−4Rd((Qw − 1)y6 + 1)2(Qw − 1)y15][

1 + 4
3
Rd ((Qw − 1)y6 + 1)3

]

[y′7 + [−Pry1y16 − Pry7y10
−M2EcPr (2y2y11 + E2 − 2Ey11)

−8Rd ((Qw − 1)y6 + 1) (Qw − 1)y15(Qw − 1)y27

−8Rd ((Qw − 1)y6 + 1)2 (Qw − 1) y7y16

−2(1 +K)EcPry3y12

−Pr (Nby7y9 +Nby9y16) + 2Nty7y16]


,

y′17 = y18,

y′18 = −PrLe(y1y18 + y9y10)−
Nt

Nb
y′16,
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y′19 = y20,

y′20 = y21,

y′21 =
1

(1 +K)

(
−y1y21 − y3y19 +M2y20 + 2y2y20 −Ky23 −M2E

)
,

y′22 = y23,

y′23 =
2

(2 +K)
(y2y22 + y4y20 − y1y23 − y5y19 +K (2y22 + y21)) ,

y′24 = y25,

y′25 =
[−4Rd((Qw − 1)y6 + 1)2(Qw − 1)y24][

1 + 4
3
Rd ((Qw − 1)y6 + 1)3

]

[y′7 + [−Pry1y25 − Pry7y19
−M2EcPr (2y2y20 + E2 − 2Ey20)

−8Rd ((Qw − 1)y6 + 1) (Qw − 1)y24(Qw − 1)y27

−8Rd ((Qw − 1)y6 + 1)2 (Qw − 1) y7y25

−2(1 +K)EcPry3y21

−Pr (Nby7y27 +Nby9y25) + 2Nty7y25]


,

y′26 = y27,

y′27 = −PrLe(y1y27 + y9y19)−
Nt

Nb
y′25,

y′28 = y29,

y′29 = y30,

y′30 =
1

(1 +K)

(
−y1y30 − y3y28 +M2y29 + 2y2y29 −Ky32 −M2E

)
,

y′31 = y32,

y′32 =
2

(2 +K)
(y2y31 + y4y29 − y1y32 − y5y28 +K (2y31 + y30)) ,

y′33 = y34,

y′34 =
[−4Rd((Qw − 1)y6 + 1)2(Qw − 1)y33][

1 + 4
3
Rd ((Qw − 1)y6 + 1)3

]

[y′7 + [−Pry1y34 − Pry7y28
−M2EcPr (2y2y29 + E2 − 2Ey29)

−8Rd ((Qw − 1)y6 + 1) (Qw − 1)y33(Qw − 1)y27

−8Rd ((Qw − 1)y6 + 1)2 (Qw − 1) y7y34

−2(1 +K)EcPry3y30

−Pr (Nby7y36 +Nby9y34) + 2Nty7y34]


,
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y′35 = y36,

y′36 = −PrLe(y1y36 + y9y28)−
Nt

Nb
y′34,

y′37 = y38,

y′38 = y39,

y′39 =
1

(1 +K)

(
−y1y39 − y3y37 +M2y38 + 2y2y38 −Ky41 −M2E

)
,

y′40 = y41,

y′41 =
2

(2 +K)
(y2y40 + y4y38 − y1y41 − y5y37 +K (2y40 + y39)) ,

y′42 = y43,

y′43 =
[−4Rd((Qw − 1)y6 + 1)2(Qw − 1)y42][

1 + 4
3
Rd ((Qw − 1)y6 + 1)3

]

[y′7 + [−Pry1y43 − Pry7y37
−M2EcPr (2y2y38 + E2 − 2Ey38)

−8Rd ((Qw − 1)y6 + 1) (Qw − 1)y42(Qw − 1)y27

−8Rd ((Qw − 1)y6 + 1)2 (Qw − 1) y7y43

−2(1 +K)EcPry3y39

−Pr (Nby7y45 +Nby9y43) + 2Nty7y43]


,

y′44 = y45,

y′45 = −PrLr(y1y45 + y9y37)−
Nt

Nb
y′43.
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y1(0) = fw, y2(0) = 1 + α(1 +K(1− n))s, y3(0) = s, y4(0) = −ns,

y5(0) = t, y6(0) = u, y7(0) = −γ1(1− u), y8(0) = v, y9(0) = −γ2(1− v),

y10(0) = 0, y11(0) = α(1 +K(1− n)), y12(0) = 1, y13(0) = −n,

y14(0) = 0, y15(0) = 0, y16(0) = 0, y17(0) = 0, y18(0) = 0,

y19(0) = 0, y20(0) = 0, y21(0) = 0, y22(0) = 0,

y23(0) = 1, y24(0) = 0, y25(0) = 0, y26(0) = 0, y27(0) = 0,

y28(0) = 0, y29(0) = 0, y30(0) = 0, y31(0) = 0,

y32(0) = 0, y33(0) = 1, y34(0) = γ1, y35(0) = 0,

y36(0) = 0, y37(0) = 0, y38(0) = 0, y39(0) = 0,

y40(0) = 0, y41(0) = 0, y42(0) = 0, y43(0) = 0, y44(0) = 1, y45(0) = γ2.

The shooting method requires the initial guess for y3(0), y5(0), y6(0) and y8(0),

and by using Newton’s procedure we can change each guess untill we attain an

approximate result for the given problem. To check accuracy of the obtained

numerical results by shooting method we compare them by the numerical results

acquired by Matlab bvp4c solver and found them in excellent agreement.

4.5 Results and discussion

This section analyze the effect of different parameters, Ec, α, M , K, Le, R, Nb,

Nt, Pr and Qw (i.e., Eckert number, slip parameter, Hartman number, material

parameter, Lewis number, Radiation parameter, Brownian movement parameter,

Thermophoresis parameter, Prandtl number and Temperature proportion ratio

parameter separately.) on dimensionless velocity, dimensionless energy, dimen-

sionless microrotation and dimensionless concentration profiles.
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4.5.1 Impact of Eckert number on the unitless concentra-

tion profile and unitless energy profile

Figure. 4.2 display the influence of Eckert number Ec on concentration profile.

It is observe that the concentration of the fluid increase near the plate. However

it diminishes away from the surface as the value of Eckert number is enhanced.

Figure. 4.3 shows the effect of Eckert number Ec on the energy profile. Energy

profile increases when increase Eckert number Ec.

Figure 4.2: Impact of Ec on the unitless concentration φ(η)

Figure 4.3: Impact of Ec on the unitless energy θ(η)
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4.5.2 Impact of slip parameter on the unitless Concentra-

tion profile and unitless energy profile

Figures. 4.4 and 4.5 illustrate the variations of slip parameter α on the concen-

tration profile φ(η) and dimensionless energy profile θ(η) respectively. It is noted

that φ(η) and θ(η) has direct relation with α. Apparently, as α mounts the lateral

surface starts moving in y-direction and as a result both the Concentration profile

φ(η) and energy profile θ(η) are increased.

Figure 4.4: Impact of α on the unitless concentration φ(η)

Figure 4.5: Impact of α on the unitless energy θ(η)
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4.5.3 Impact of Hartman number on unitless velocity, unit-

less temperature and unitless concentration

Figure. 4.6, Figure. 4.7 and Figure. 4.8 shows the variations in the velocity profile

f ′(η), energy profile θ(η) and concentration profile φ(η) for different estimations

of Hartman number M . It is analyzed that the temperature profile θ(η), concen-

tration profile φ(η) and thermal boundary layer thickens are increasing functions

of Hartman number, however on the opposite side velocity profile f ′(η) decreases

when we increase Hartman number M .

Figure 4.6: Impact of M on the unitless velocity f ′(η)

Figure 4.7: Impact of M on the unitless energy θ(η)
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Figure 4.8: Impact of M on the unitless concentration φ(η)

4.5.4 Impact of material parameter on the unitless micro-

rotation profile and unitless velocity profile

Figures 4.9 and 4.10 show the influences of material parameter K on the microro-

tation profile h(η) and velocity profile f ′(η) respectively.By increasing K, velocity

field reduces in the lower half of the surface whereas it enhances in the upper half.

Velocity reduces initially with the growing values of material parameter K. How-

ever for η > 2.2 there is an increase in the microrotation profile and for η > 0.6

there is an increase in the velocity profile.

Figure 4.9: Impact of K on the unitless microrotation h(η)
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Figure 4.10: Impact of K on the unitless velocity f ′(η)

4.5.5 Impact of Lewis number on the unitless concentra-

tion profile

Fig 4.11 show the influences of Lewis number Le on the concentration profile φ(η).

The concentration profile is falls when we increase the values of Lewis number Le.

Figure 4.11: Impact of Le on the unitless velocity φ(η)
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4.5.6 Impact of thermal radiation parameter on unitless

energy profile

Both the energy profile θ(η) and thermal boundary layer thickens are mounting

function of heat rays parameter R. It is noticed as by increase in R results in

increased thermal boundary layer.

Figure 4.12: Impact of R on the unitless energy θ(η)

4.5.7 Impact of Thermophoresis parameter on unitless en-

ergy profile and unitless concentration profile

Figure 4.13 and Figure 4.14 show the impact of Nt on the temperature profile

θ(η) and concentration profile φ(η). Thermophoresis is a component that drives

small materials away from hot layer to the cooler end, owing to the fact that both

temperature profile θ(η) and concentration profiles φ(η) are growing function of

thermophoretic parameter Nt.
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Figure 4.13: Impact of Nt on the unitless concentration φ(η)

Figure 4.14: Impact of Nt on the unitless energy θ(η)



71

4.5.8 Impact of Prandtl number on unitless temperature

profile and unitless concentration profile

Figure 4.15 and Figure 4.16 presents that an elevation in Prandtl number Pr

shows a redaction in the temperature profile θ(η) and concentration profile φ(η).

Obviously, greater Prandtl number Pr has weaker thermal diffusivity due to which

low range temperature is seen in Fig. 4.17 and Fig. 4.18. This indicates resection

in energy exchange ability and finally it causes an reduction in thermal boundary

surface.

Figure 4.15: Impact of Pr on the unitless concentration φ(η)

Figure 4.16: Impact of Pr on the unitless energy θ(η)
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4.5.9 Impact of temperature ratio parameter on unitless

energy profile and unitless concentration profile

Figure 4.17 represents the impact of the temperature ratio parameter Qw on en-

ergy profile. The increase in temperature ratio parameterQw increases the thermal

condition of the fluid, resulting in an expansion in energy profiles.

Figure 4.17: Impact of Qw on the unitless energy θ(η)

4.5.10 Skin-friction coefficient, Nusselt number and She-

wood number

Both the physical parameters Cf , Nux and Shx are of great interest to engineers.

Cf is the one which examines the viscus stress acting on the surface of the plate.
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Parameters
1/2CfxRe

1/2
x

NuRex−1/2
ShRe

−1/2
x

K M n fw α Shooting bvp4c Shooting bvp4c Shooting bvp4c

0.2 -0.37183 -0.37183 0.10528 0.10671 0.08734 0.08734

0.3 -0.37483 -0.37483 0.10525 0.10669 0.08735 0.08735

0.4 -0.37769 -0.37769 0.10522 0.10666 0.08736 0.08736

0.2 0.2 -0.37093 -0.37093 0.10553 0.10692 0.08743 0.08743

0.3 -0.37052 -0.37052 0.10576 0.10711 0.08752 0.08752

0.4 -0.37112 -0.37112 0.10592 0.10725 0.08757 0.08757

0.1 0.6 -0.37073 -0.37073 0.10522 0.10666 0.08734 0.08734

0.7 -0.36959 -0.36959 0.10516 0.10661 0.08733 0.08733

0.8 -0.36842 -0.36842 0.10510 0.10655 0.08733 0.08733

0.5 0.2 -0.38154 -0.38154 0.11036 0.10914 0.08888 0.08888

0.3 -0.39134 -0.39134 0.11519 0.11114 0.09014 0.09014

0.4 -0.40120 -0.40120 0.11984 0.11281 0.09119 0.09119

0.1 1.5 -0.35621 -0.35621 0.10514 0.10660 0.08720 0.08720

1.6 -0.34191 -0.34191 0.10500 0.10649 0.08707 0.08707

1.7 -0.33785 -0.32877 0.10496 0.10638 0.08704 0.08695

Table 4.1: Numerical results of 1/2CfxRe
1/2
x , Nu/Re

1/2
x and ShxRe

−1/2
x for

different values of R, Qw, Pr, Ec and Nb

Parameters NuRex
−1/2 ShRe−1/2x

R Qw Pr Ec Nb Shooting bvp4c Shooting bvp4c
0.3 0.11587 0.11733 0.08736 0.08734
0.4 0.12622 0.12938 0.08739 0.08734
0.5 0.13633 0.14143 0.08741 0.08734
0.2 1.4 0.10596 0.10614 0.08734 0.08734

1.5 0.10665 0.10701 0.08735 0.08734
1.6 0.10735 0.10791 0.08735 0.08734
1.3 1.7 0.10597 0.10528 0.08780 0.08734

1.8 0.10659 0.10528 0.08821 0.08734
1.9 0.2 0.10716 0.10528 0.08860 0.08734

0.3 0.10312 0.10528 0.08741 0.08734
0.4 0.10097 0.10528 0.08747 0.08734
0.1 1.3 0.09882 0.10528 0.08754 0.08734

1.4 0.10510 0.10528 0.08742 0.08734
1.5 0.10493 0.10528 0.08748 0.08734

Table 4.2: Numerical results of Nu/Re
1/2
x and ShxRe

−1/2
x for different values

of R, Qw, Pr, Ec and Nb
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Parameters NuRex
−1/2 ShRe−1/2x

Nt Le γ1 γ2 Shooting bvp4c Shooting bvp4c
0.3 0.10503 0.10650 0.08689 0.08689
0.4 0.10478 0.10629 0.08644 0.08644
0.5 0.10453 0.10607 0.08600 0.08600
0.2 1.3 0.10533 0.10675 0.08795 0.08795

1.4 0.10538 0.10679 0.08850 0.08850
1.5 0.10543 0.10683 0.08898 0.08898
1.2 0.2 0.17775 0.18498 0.08669 0.08669

0.3 0.22928 0.24361 0.08624 0.08624
0.4 0.26719 0.28861 0.08592 0.08592
0.1 0.2 0.10358 0.10526 0.15643 0.15643

0.3 0.10210 0.10401 0.21246 0.21246
0.4 0.10082 0.10291 0.25880 0.25880

Table 4.3: Numerical results of Nu/Re
1/2
x and ShxRe

−1/2
x for different values

of Nt, Le, γ1 and γ2

In Table 4.1, 4.2 and 4.3 the numerical analysis of Cf , Sh and Nux on different

physical parameters is displayed. We compare the results obtained by Shooting

method with Matlab bvp4c code and found both to be in excellent agreement. It

is observed, the increase in Hartman number M and Suction/Injection velocity

fw enhance the local skin-friction coefficient, local Nuselt number and Sherwood

number. Moreover, the local Nusselt number and Sherwood number falls by en-

larging the Eckert number Ec, and Thermophoresis parameter Nt. Whereas local

skin-friction coefficient, Nusselt number, Sherwood number shows a decreasing be-

havior for Buoyancy ratio parameter n and slip parameter α. The local Nusselt

number and Sherwood number mounts when enlarging Radiation parameter R,

Temperature ratio parameter Qw, Prandtl number Pr and Lewis number Le.
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4.6 Summary

In this chapter, the flow of micropoler fluid past a penetrable stretching sheet

in the presence of Joule heating and magneto MHD with moving fluid bound-

ary conditions, is presented. The dimensionless velocity, dimensionless energy,

dimensionless concentration and dimensionless micro-rotation are analyzed and

presented in the form of graphs and tables. We present the Nusselt number, Sher-

wood number and local skin-friction in the tabular form for various number of

the distinctive parameters. From the above discussion, we can make the following

conclusions.

• Higher values of M yields an increment in the energy profile and Concentra-

tion profile whereas an opposite effect has noticed for the velocity profile.

• An increase in α results in enhanced energy as well as concentration profile.

• Energy profile θ increases by enlarging Ec.

• The energy profile θ increase and concentration profile φ reduces with an

increase in Nb.

• The energy profile θ and concentration profile φ increases with an increase

in Nt.

• For larger values of Pr energy profile θ and concentration profile φ shows

decreasing behavior.

• The velocity profile f ′ increases by enlarging K.

• The Energy profile increases by enlarging R and Qw.

• The concentration profile φ reduces with an increase in Le.



Chapter 5

Conclusion

In this thesis, we discuss the partial slip effects of magneto-micropolar nanofluid

movement and heat exchange past a convectively heated sheet along with nonlinear

thermal radiation and resistive losses. The reduced system of ODEs after applying

a proper similarity transform are solved numerically. Numerical solution of these

modeled ODEs are acquired by using shooting method. A numerical comparison

has displayed for various physical parameters affecting flow and heat transfer and

found to be in excellent agreement with Matlab bvp4c code. Significance of differ-

ent physical parameters under discussion on dimensionless velocity, microrotation,

energy and concentration profile are depicted spectrally for the effect of appro-

priate parameters. In general, It is obvious, the inflated in Hartman number M

and Suction/Injection velocity fw enhance the local skin-friction coefficient, local

Nusselt number and Sherwood number. For increasing values of Thermal Biot

number γ1 local Nusselt number is increase but Sherwoof number is decrease, But

on the other hand for increasing values of Concentration Biot number γ2 the local

Nusselt number decrease and Sherwood number mounts.
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